Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Journal of Experimental Hematology ; (6): 422-427, 2021.
Article in Chinese | WPRIM | ID: wpr-880091

ABSTRACT

OBJECTIVE@#To investigate the effect of tumor necrosis factor death receptor (DR) 4 demethylation to the proliferation and apoptosis of myeloid leukemia K562 cells.@*METHODS@#The logarithmic phase of K562 cells were treated by desitabine (DCA) at 0, 0.8, 1.6 and 3.2 μmol/L, and the cells were divided into control group, DCA low dose group, DCA medium dose group and DCA high dose group respectively. The cells in control group were treated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 0.5 μg/ml for 24 h, and the cells were divided into TRAIL group. The cells in DCA high dose group were treated by TRAIL 0.5 μg/ml for 24 h, and were divided into DCA high dose + TRAIL group. Methylation-specific polymerase chain reaction (MS-PCR) was used to measure the methylation status of the DR4 gene promoter in the control group and DCA low, medium and high dose groups. Real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) and Western blot were used to determine the relative expression of DR4 mRNA and protein in the control group and DCA low, medium and high dose groups. Dime- thylthiazole (MTT) method was used to determine the inhibition rate of cell proliferation of the cells in control group, DCA high dose group, TRAIL group, DCA high dose + TRAIL group. Flow cytometry was used to determine the apoptotic rate of the cells in control group, DCA high dose group, TRAIL group, DCA high dose + TRAIL group.@*RESULTS@#The cells in the control group were methylation-positive, the brightness of the methylation bands of the cells in the DCA low, medium, and high dose groups was gradually decreased to disappear, and the DCA high dose group showed negative for methylation. The relative expression of DR4 mRNA and protein in the control group, DCA low, medium and high dose groups was increased sequentially (r=0.624, 0.704). The inhibition rate of cell proliferation of the cells in the control group, DCA high dose group, TRAIL group, DCA high dose + TRAIL group was increased sequentially (r=0.653, 0.754, 0.709, 0.725) at 24, 48 and 72 h.@*CONCLUSION@#DCA can reverse the methylation level of DR4 gene promoter in ML K562 cells and up-regulate the expression of DR4, which may enhance the proliferation inhibition and apoptosis promotion effects of TRAIL on K562 cells.


Subject(s)
Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Demethylation , K562 Cells , Leukemia, Myeloid , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism
2.
Rev. Assoc. Med. Bras. (1992) ; 61(6): 524-529, Nov.-Dec. 2015.
Article in English | LILACS | ID: lil-771990

ABSTRACT

SUMMARY Introduction: osteoprotegerin has emerged as a new candidate for the treatment of osteoporosis. However, high levels of osteoprotegerin have been linked to vascular calcification, an independent and well-defined risk factor for cardiovascular disease (CVD) and mortality. Thus, the action of osteoprotegerin in these situations has been questioned. Objective: to evaluate the effect of osteoprotegerin (OPG) on the human body, especially in bone tissue and in vascular diseases. Methods: the scientific databases consulted were PubMed-Medline and Cochrane, using keywords (MeSH terms) grouped into the following syntaxes: (Osteoprotegerin OR Osteoclastogenesis Inhibitory Factor OR Receptors, Tumor Necrosis Factor, Member 11b OR Tumor Necrosis Factor Receptor Superfamily, Member 11b OR FDCR-1 Protein OR FDCR 1 Protein OR OCIF Protein OR Follicular Dendritic Cell-Derived Receptor-1) AND (Bones AND Bone OR Bones AND Bone Tissue OR Bones OR Bone Tissue OR Cardiovascular Diseases). Results: Osteoprotegerin is present in various organs and binds to two ligands: nuclear factor kB (RANKL) related to the differentiation of osteoclasts, and tumor necrosis factor related to the apoptosis-inducing ligand (TRAIL). OPG inhibits the regulation effects of nuclear factor kB on inflammation and on the skeletal and vascular systems, preventing the apoptosis induced by TRAIL, being related to the preservation of bone tissue. Conclusion: a deeper knowledge of the mechanisms involved in the association between OPG serum levels, bone integrity and cardiovascular disease can provide important data for future therapeutic interventions.


RESUMO Introdução: a osteoprotegerina (OPG) tem surgido como uma nova candidata para o tratamento da osteoporose; no entanto, níveis elevados de OPG têm sido relacionados à calcificação vascular, um fator de risco independente e bem definido para doença cardiovascular (DCV) e mortalidade. Assim, a ação da OPG nessas situações tem sido questionada. Objetivo: avaliar a ação da OPG no corpo humano, em especial no tecido ósseo e nas doenças vasculares. Métodos: as bases de informação científica consultadas foram PubMed-Medline e Cochrane, utilizando-se palavras-chave (MeSH terms) agrupadas nas seguintes sintaxes: (Osteoprotegerin OR Osteoclastogenesis Inhibitory Factor OR Receptors, Tumor Necrosis Factor, Member 11b OR Tumor Necrosis Factor Receptor Superfamily, Member 11b OR FDCR-1 Protein OR FDCR 1 Protein OR OCIF Protein OR Follicular Dendritic Cell-Derived Receptor-1) AND (Bones AND Bone OR Bones AND Bone Tissue OR Bones OR Bone Tissue OR Cardiovascular Diseases). Resultados: a OPG está presente em vários órgãos e une-se a dois ligantes: o fator nuclear kB (RANKL), relacionado com a diferenciação dos osteoclastos, e o fator de necrose tumoral, relacionado ao ligante indutor de apoptose (TRAIL). Assim, a OPG inibe os efeitos da regulação do fator nuclear kB na inflamação e nos sistemas esquelético e vascular, prevenindo a apoptose induzida pelo TRAIL, estando relacionada com a preservação do tecido ósseo. Conclusão: um conhecimento mais aprofundado sobre os mecanismos envolvidos na associação entre os níveis séricos da OPG, integridade óssea e doenças cardiovasculares podem proporcionar dados importantes para futuras intervenções terapêuticas.


Subject(s)
Female , Humans , Bone and Bones/metabolism , Osteoprotegerin/blood , Bone Remodeling/physiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/metabolism , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Risk Factors , TNF-Related Apoptosis-Inducing Ligand/metabolism , Vascular Calcification/blood , Vascular Calcification/metabolism
3.
Experimental & Molecular Medicine ; : 138-145, 2011.
Article in English | WPRIM | ID: wpr-171915

ABSTRACT

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily of cytokines, is one of the most promising candidates for cancer therapeutics. However, many osteosarcomas are resistant to TRAIL. Bisphosphonates are very effective in the treatment of bone problems associated with malignancies; the antitumor effects are due to the inhibition of protein prenylation that is essential for cell function and survival. The purpose of this study was to determine the effects of bisphosphonates on TRAIL-resistant MG 63 human osteosarcoma cells. The cells showed no response to TRAIL alone; however, pre-treatment with bisphosphonates significantly increased TRAIL-mediated apoptosis and cellular activation of caspase-3. Bisphosphonates significantly induced mRNA and protein expression of the TRAIL receptor, DR5. Bisphosphonates induced protein unprenylation in MG 63 cells; in addition, co-treatment with TRAIL also significantly increased protein unprenylation. Blocking of protein unprenylation using geranylgeraniol attenuated the cellular responses, including cell apoptosis and protein unprenylation induced by bisphosphonates and TRAIL. This is the first study to demonstrate that bisphosphonates markedly enhanced TRAIL-induced apoptosis in human osteosarcoma cells. These findings suggest that bisphosphonates may be a new and effective anticancer treatment with TRAIL proteins for TRAIL-resistant cancer cells.


Subject(s)
Humans , Apoptosis , Blotting, Western , Bone Density Conservation Agents/pharmacology , Bone Neoplasms/drug therapy , Cell Proliferation , Diphosphonates/pharmacology , Fluorescent Antibody Technique , Osteosarcoma/drug therapy , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Cells, Cultured , Up-Regulation
4.
Experimental & Molecular Medicine ; : 24-34, 2011.
Article in English | WPRIM | ID: wpr-48417

ABSTRACT

Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells while sparing normal cells. However, many cancer cells are resistant to TRAIL-induced cell death. Here, we report that paxilline, an indole alkaloid from Penicillium paxilli, can sensitize various glioma cells to TRAIL-mediated apoptosis. While treatment with TRAIL alone caused partial processing of caspase-3 to its p20 intermediate in TRAIL-resistant glioma cell lines, co-treatment with TRAIL and subtoxic doses of paxilline caused complete processing of caspase-3 into its active subunits. Paxilline treatment markedly upregulated DR5, a receptor of TRAIL, through a CHOP/GADD153-mediated process. In addition, paxilline treatment markedly downregulated the protein levels of the short form of the cellular FLICE-inhibitory protein (c-FLIPS) and the caspase inhibitor, survivin, through proteasome-mediated degradation. Taken together, these results show that paxilline effectively sensitizes glioma cells to TRAIL-mediated apoptosis by modulating multiple components of the death receptor-mediated apoptotic pathway. Interestingly, paxilline/TRAIL co-treatment did not induce apoptosis in normal astrocytes, nor did it affect the protein levels of CHOP, DR5 or survivin in these cells. Thus, combined treatment regimens involving paxilline and TRAIL may offer an attractive strategy for safely treating resistant gliomas.


Subject(s)
Humans , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Astrocytes/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Caspase 3/metabolism , Cell Line, Tumor , Drug Discovery , Flow Cytometry , Glioma/metabolism , Indoles/pharmacology , Inhibitor of Apoptosis Proteins/metabolism , RNA, Small Interfering , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Reverse Transcriptase Polymerase Chain Reaction , TNF-Related Apoptosis-Inducing Ligand/metabolism , Transcription Factor CHOP/analysis
5.
Experimental & Molecular Medicine ; : 362-369, 2009.
Article in English | WPRIM | ID: wpr-136579

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) has been proposed as a promising cancer therapy that preferentially induces apoptosis in cancer cells, but not most normal tissues. However, many cancers are resistant to TRAIL by mechanisms that are poorly understood. In this study, we showed that tunicamycin, a naturally occurring antibiotic, was a potent enhancer of TRAIL-induced apoptosis through downregulation of survivin. The tunicamycin-mediated sensitization to TRAIL was efficiently reduced by forced expression of survivin, suggesting that the sensitization was mediated at least in part through inhibition of survivin expression. Tunicamycin also repressed expression of cyclin D1, a cell cycle regulator commonly overexpressed in thyroid carcinoma. Furthermore, silencing cyclin D1 by RNA interference reduced survivin expression and sensitized thyroid cancer cells to TRAIL; in contrast, forced expression of cyclin D1 attenuated tunicamycin-potentiated TRAIL-induced apoptosis via over-riding downregulation of survivin. Collectively, our results demonstrated that tunicamycin promoted TRAIL-induced apoptosis, at least in part, by inhibiting the expression of cyclin D1 and subsequent survivin. Of note, tunicamycin did not sensitize the differentiated thyroid epithelial cells to TRAIL-induced apoptosis. Thus, combined treatment with tunicamycin and TRAIL may offer an attractive strategy for safely treating resistant thyroid cancers.


Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cyclin D1/antagonists & inhibitors , Down-Regulation , Microtubule-Associated Proteins/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tunicamycin/pharmacology
6.
Experimental & Molecular Medicine ; : 362-369, 2009.
Article in English | WPRIM | ID: wpr-136578

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) has been proposed as a promising cancer therapy that preferentially induces apoptosis in cancer cells, but not most normal tissues. However, many cancers are resistant to TRAIL by mechanisms that are poorly understood. In this study, we showed that tunicamycin, a naturally occurring antibiotic, was a potent enhancer of TRAIL-induced apoptosis through downregulation of survivin. The tunicamycin-mediated sensitization to TRAIL was efficiently reduced by forced expression of survivin, suggesting that the sensitization was mediated at least in part through inhibition of survivin expression. Tunicamycin also repressed expression of cyclin D1, a cell cycle regulator commonly overexpressed in thyroid carcinoma. Furthermore, silencing cyclin D1 by RNA interference reduced survivin expression and sensitized thyroid cancer cells to TRAIL; in contrast, forced expression of cyclin D1 attenuated tunicamycin-potentiated TRAIL-induced apoptosis via over-riding downregulation of survivin. Collectively, our results demonstrated that tunicamycin promoted TRAIL-induced apoptosis, at least in part, by inhibiting the expression of cyclin D1 and subsequent survivin. Of note, tunicamycin did not sensitize the differentiated thyroid epithelial cells to TRAIL-induced apoptosis. Thus, combined treatment with tunicamycin and TRAIL may offer an attractive strategy for safely treating resistant thyroid cancers.


Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cyclin D1/antagonists & inhibitors , Down-Regulation , Microtubule-Associated Proteins/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tunicamycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL